
CS106A Handout 28

Winter 2013-2014 February 28, 2014

Second Practice Second CS106A Midterm

This handout is intended to give you practice solving problems that are comparable in format and
difficulty to those which will appear on the second midterm final exam.

Second Midterm Exam is Open Book, Open Notes, Closed Computer
The examination is open-book (specifically the course textbook The Art and Science of Java) and
you may make use of any handouts, course notes/slides, printouts of your programs or other notes
you've taken in the class. You may not, however, use a computer of any kind (i.e., you cannot use
laptops on the exam).

Coverage
The second midterm exam covers the material presented throughout the class (with the exception
of the Karel material). You are responsible for all topics covered in lectures up through and in-
cluding Wednesday's lecture and for topics from the assignments.

General instructions
Answer each of the questions included in the exam. Write all of your answers directly on the ex-
amination paper, including any work that you wish to be considered for partial credit.

Each question is marked with the number of points assigned to that problem. In all questions, you
may include methods or definitions that have been developed in the course, either by writing the
import line for the appropriate package or by giving the name of the method and the handout or
textbook chapter number in which that definition appears.

Unless otherwise indicated as part of the instructions for a specific problem, comments will not
be required on the exam. Uncommented code that gets the job done will be sufficient for full
credit on the problem. On the other hand, comments may help you to get partial credit if they
help us determine what you were trying to do.

In an effort to save trees, the blank pages that would be provided in a regular
exam for writing your solutions have been omitted from this practice exam.

2 / 7

Problem One: Isograms (10 Points)

An isogram is a word that contains no repeated letters. For example, the word “computer” is an iso-
gram because each letter in the word appears exactly once, but the word “banana” is not because 'a' and
'n' appear three times each. “Isogram” is itself an isogram, but “isograms” is not because there are two
copies of 's'.

There are many long isograms in English; for example, “uncopyrightable” and “computerizably.” Your
job is to write a method that, given a list of all the words in the English language, finds out what the
longest isogram actually is. Write a method

private String longestIsogram(ArrayList<String> allWords)

that accepts as input a ArrayList<String> containing all words in English (stored in lower-case) and
returns the longest isogram in the list. If multiple words are tied as the longest isogram, feel free to re-
turn any one of them.

private String longestIsogram(ArrayList<String> allWords) {

3 / 7

Problem Two: Jackson Pollock (10 Points)

In this problem, you'll build a program that draws artwork in the style of the abstract expressionist
painter Jackson Pollock. Pollock created paintings by laying the canvas down on the floor of his stu-
dio, then throwing paint of different colors onto it. The resulting paintings contain a mishmash of col-
ors that are artistically and aesthetically interesting.

Your task is to write a program that simulates randomly-thrown droplets of colored paint landing on a
canvas. Below is a screenshot of this program:

As soon as the program starts up, it begins drawing randomly-positioned circles on the canvas, each of
which represents a drop of paint. The center of each circle is chosen as a random point inside the can-
vas, so the entire circle won't necessarily fit inside the window. In order to watch the art evolve over
time, you should pause for PAUSE_TIME milliseconds after each drop of paint. Each circle's color
should be chosen at random.

The radius of each circle should be determined by the value of a JSlider at the bottom of the window.
The slider should range between the values MIN_RADIUS and MAX_RADIUS, and its default value should
be DEFAULT_RADIUS. This slider should have a label to its left that reads “Droplet radius:” so that users
understand what it controls.

If the user clicks the Fill White button, then the display should be filled with a solid white color, repre-
senting what would happen if you covered the canvas in a complete coat of white paint. The Fill Black
button is similar, except that it will fill the canvas with black paint.

import /* … lots of imports … */;

public class JacksonPollock extends GraphicsProgram {

 /** Amount of time to pause between droplets, in milliseconds. */

 private static final double PAUSE_TIME = 1.0;

 /** Minimum, maximum, and default radius of each drop of paint. */

 private static final int MIN_RADIUS = 3;

 private static final int MAX_RADIUS = 20;

 private static final int DEFAULT_RADIUS = 7;

4 / 7

Problem Three: Kerning (10 Points)

Although we've used GLabel extensively in this class, we never discussed how the computer actually
displays text. Internally, the computer maintains a set of images representing what each character looks
like. To display text on the screen, the computer lays out these images side-by-side. For example, to
display the string “VAT,” the computer begins with a set of images for the letters V, A, and T, then
places them side-by-side to form the string. This is shown here:

V A T → VAT
Unfortunately, this approach to laying out text will distort certain strings. For example, consider the fol-
lowing rendition of the string “THE VATICAN:”

THE VATICAN
Notice how the V, A, and T in “VATICAN” appear to be spaced out more than the T, I, and C. The rea-
son for this is that the images for the letters V, A, and T have a lot of whitespace in them. When the im-
ages for the letters are placed next to one another, this whitespace adds up and spaces the letters farther
apart than they should be.

To correct for this, the computer typically overlaps the images for certain pairs of letters to reduce
whitespace. For example, if we slightly overlap the images for V and A and the images for A and T, we
get this rendering of the word VAT:

VAT
The amount that the images of two letters overlap is called the kern, and the process of overlapping let-
ters this way is called kerning. Kerning can make text much more aesthetically pleasing. Compare the
above rendition of “THE VATICAN,” which had no kerning, to this one, which has been kerned:

THE VATICAN
Notice how there is less blank space between the V, A, and T in VATICAN.

Your task in this problem is to write a method that will accept as input images of two letters, then will
kern the images by some specified amount. For example, here is the sample output of this method on
the letters V and A with several different kerns; the vertical bar in the outputs marks the end of the V
image:

5 / 7

For simplicity, and to avoid some of the complexities of GImage, we will represent the images of letters
as two-dimensional arrays of booleans indicating for each pixel in the image whether the pixel is white
(false) or black (true). As an example, the letter A might be represented as follows:

{
 { false, false, false, false, true, false, false, false, false },
 { false, false, false, false, true, false, false, false, false },
 { false, false, false, true, false, true, false, false, false },
 { false, false, false, true, false, true, false, false, false },
 { false, false, true, false, false, false, true, false, false },
 { false, false, true, false, false, false, true, false, false },
 { false, true, true, true, true, true, true, true, false },
 { false, true, false, false, false, false, false, true, false },
 { false, true, false, false, false, false, false, true, false },
 { true, true, true, false, false, false, true, true, true }
}

Write a method

private boolean[][] kernLetters(boolean[][] first, boolean[][] second, int kern)

that accepts as input two boolean arrays representing images of letters, along with an amount to over-
lap the two images, then returns a new boolean array representing the image formed by kerning the
two letters by the given amount. You can assume that the two images have the same height, though they
might not have the same width. You can also assume that the amount to kern the letters is nonnegative
and is smaller than the widths of either image.

As shown in the sample outputs at the top of this page, the resulting image should be no wider than
necessary. If the kern is zero, the width of the resulting image should be the width of the two individual
images put together. As the kern increases, the width of the result image should decrease.

private boolean[][] kernLetters(boolean[][] first, boolean[][] second, int kern) {

Kern 0

Kern 1

Kern 2

6 / 7

Problem Four: Finding Celebrities (10 Points)

In Facebook's social network, friendships are mutual: if person A is a friend of person B, then person B
is a friend of person A. However, other personal relationships are not mutual. For example, the relation-
ship “knows” might only go one way; if person A knows person B, person B might not know person A.
We can represent who knows who as a graph: each node represents a person, and each edge from per-
son A to person B represents that person A knows person B.

Let's call a person a celebrity if at least half of the people in a social network know that person. For ex-
ample, consider this graph:

Angela

Brett

Caitlin

Devney

Here, Angela is a celebrity because 3 people know her (Brett, Caitlin, and Devney), and Devney is a
celebrity because two people know her (namely, Angela and Brett). Caitlin is not a celebrity, since only
one person knows her (Brett), and Brett is not a celebrity since no one knows him (though he somehow
knows everyone else.)

Write a method

private ArrayList<String> findCelebrities(HashMap<String, ArrayList<String>> graph)

that accepts as input a HashMap<String, ArrayList<String>> representing the graph of who knows
who, then returns an ArrayList<String> containing all the celebrities in the graph. You can assume
that each person in the social network is a key in the map, even if they don't know anyone else (in
which case their ArrayList<String> will be empty).

private ArrayList<String> findCelebrities(Map<String, List<String>> graph) {

7 / 7

Problem Five: I'm Feeling Lucky (10 Points)

If you'll recall from lecture, the PageRank algorithm assigns a score to each page on the web. The
higher a site's PageRank, the more important the page. In our lecture example, we used PageRank to
find the fifty most important pages on Wikipedia. Using PageRank to build a search engine requires a
few more steps.

Here is a simplification of the algorithm that Google uses to perform searches:

1. First, Google compiles a list of all URLs for pages that contain the search query. These are
URLs for pages likely to be relevant. All other URLs are ignored.

2. Next, Google filters this list of URLs by removing all URLs on a known blacklist (which usu-
ally contains malicious sites that steal personal information). This leaves a set of relevant URLs
for reasonable sites.

3. Finally, Google sorts these URLs in descending order of their PageRank and displays the result.

In this problem, your job is to implement the following method, which returns the URL of the highest-
rated page that Google would display for a search query:

private String imFeelingLucky(String searchQuery,

HashMap<String, String> textOfPages,

ArrayList<String> blacklistedURLs,

HashMap<String, Double> pageRank)

Here, the parameters are as follows:

• searchQuery is the user's search query.

• textOfPages is a HashMap<String, String> that stores all pages on the web. Each key in the
map is a URL, and the value is the full text of the page with that URL.

• blacklistedURLs is a ArrayList<String> of URLs that have been blacklisted from appearing
as a search result.

• pageRank is a HashMap<String, Double> from URLs to the PageRank score of the page with
that URL. All PageRank scores are positive.

For this problem, you should check to see if the given search query appears on a page by checking,
case-insensitively, if the search string appears verbatim anywhere in the page's text. For example, the
phrase “cute cat” will match on a page with the phrase “CUTE CAT” on it. However, if you search for
“cute cat” on a page whose text is “the cat was cute,” that page shouldn't be added to the candidate set,
since the exact string “cute cat” doesn't appear anywhere on the page.

If no pages can be returned – either because no pages contain the given search query, or because all the
search results are blacklisted – your method should return null as a sentinel. If multiple pages are tied
as the highest-rated page, then your method can return any one of them.

private String imFeelingLucky(String searchQuery,

HashMap<String, String> textOfPages,

ArrayList<String> blacklistedURLs,

HashMap<String, Double> pageRank) {

